solve Subroutine

private pure subroutine solve(self, eos_left, state_left, eos_right, state_right, normal, fluxes)

Solve Riemann Problem.

Approximate Riemann Solver based on (local) Lax-Friedrichs (known also as Rusanov) algorithm.

Arguments

Type IntentOptional AttributesName
class(riemann_solver_compressible_exact), intent(in) :: self

Solver.

class(eos_object), intent(in) :: eos_left

Equation of state for left state.

class(conservative_object), intent(in) :: state_left

Left Riemann state.

class(eos_object), intent(in) :: eos_right

Equation of state for right state.

class(conservative_object), intent(in) :: state_right

Right Riemann state.

type(vector), intent(in) :: normal

Normal (versor) of face where fluxes are given.

class(conservative_object), intent(inout) :: fluxes

Fluxes of the Riemann Problem solution.


Source Code


Source Code

   pure subroutine solve(self, eos_left, state_left, eos_right, state_right, normal, fluxes)
   !< Solve Riemann Problem.
   !<
   !< Approximate Riemann Solver based on (local) Lax-Friedrichs (known also as Rusanov) algorithm.
   class(riemann_solver_compressible_exact), intent(in)    :: self            !< Solver.
   class(eos_object),                        intent(in)    :: eos_left        !< Equation of state for left state.
   class(conservative_object),               intent(in)    :: state_left      !< Left Riemann state.
   class(eos_object),                        intent(in)    :: eos_right       !< Equation of state for right state.
   class(conservative_object),               intent(in)    :: state_right     !< Right Riemann state.
   type(vector),                             intent(in)    :: normal          !< Normal (versor) of face where fluxes are given.
   class(conservative_object),               intent(inout) :: fluxes          !< Fluxes of the Riemann Problem solution.
   type(riemann_pattern_compressible_pvl)                  :: pattern         !< Riemann (states) pattern solution.
   real(R8P)                                               :: dum, alfa, beta !< Dummies coefficients.
   real(R8P)                                               :: p_2, p_3        !< Pessure of state 2 and 3.
   real(R8P)                                               :: dp2, dp3        !< Derivate of pessure (dp/du) of state 2 and 3.

   call pattern%initialize(eos_left=eos_left, state_left=state_left, eos_right=eos_right, state_right=state_right, normal=normal)

   ! initiale u23 speed
   if (pattern%p_1 < pattern%p_4) then
     dum  = 0.5_R8P * pattern%eos_4%gm1() / pattern%eos_4%g() ! (gamma - 1) / (gamma * 2)
   else
     dum  = 0.5_R8P * pattern%eos_1%gm1() / pattern%eos_1%g() ! (gamma - 1) / (gamma * 2)
   endif
   alfa = (pattern%p_1 / pattern%p_4) ** dum
   beta = alfa * pattern%eos_1%delta() / pattern%a_1 + pattern%eos_4%delta()/ pattern%a_4
   pattern%u23 = (alfa - 1.0_R8P) / beta +               &
                 0.5_R8P * (pattern%u_1 + pattern%u_4) + &
                 0.5_R8P * (pattern%u_1 - pattern%u_4) * &
                 (alfa * pattern%eos_1%delta() / pattern%a_1 - pattern%eos_4%delta()/ pattern%a_4) / beta

   Newton: do
      call pattern%compute_states23_from_u23(p_2=p_2, p_3=p_3)
      ! evaluate the Newton-Rapson convergence
      if (abs(1.0_R8P - (p_2 / p_3)) >= self%tolerance) then
         dp2 = -1._R8P * pattern%eos_1%g() * p_2 / pattern%a_2
         dp3 =  1._R8P * pattern%eos_4%g() * p_3 / pattern%a_3
         pattern%u23 = pattern%u23 - ((p_2 - p_3) / (dp2-dp3))
      else
        pattern%p23 = p_2 ! p_2 ~= p_3
        exit Newton
      endif
   enddo Newton

   call pattern%compute_fluxes(normal=normal, fluxes=fluxes)
   endsubroutine solve


add add add_euler array array compute_derivate compute_dt compute_fluxes compute_fluxes compute_fluxes_from_primitive compute_post_rarefaction compute_post_shock compute_roe_state compute_states23_from_u23 compute_u23 compute_up23 compute_waves compute_waves_u23 compute_waves_up23 cons_assign_cons cons_divide_real cons_multiply_cons cons_multiply_real conservative_compressible conservative_compressible_instance conservative_compressible_pointer conservative_to_primitive_compressible cp cv delta density description description description description destroy destroy destroy dEuler_dt energy energy eos_assign_eos eos_compressible eos_compressible_instance eos_compressible_pointer eta euler_assign_euler euler_assign_real euler_local_error euler_multiply_euler euler_multiply_real g gm1 gp1 impose_boundary_conditions initialize initialize initialize initialize initialize initialize initialize initialize initialize initialize left_eigenvectors momentum negative negative output parse_command_line_interface positive positive pressure pressure prim_assign_prim prim_divide_real prim_multiply_prim prim_multiply_real primitive_compressible primitive_compressible_instance primitive_compressible_pointer primitive_to_conservative_compressible R real_multiply_cons real_multiply_euler real_multiply_prim reconstruct_interfaces_characteristic reconstruct_interfaces_conservative reconstruct_interfaces_primitive right_eigenvectors rpat_assign_rpat save_time_serie solve solve solve solve solve speed_of_sound sub sub sub_euler temperature velocity