is_concyclic_R8P Function

public elemental function is_concyclic_R8P(self, pt1, pt2, pt3, tolerance) result(is_concyclic_)

Return true if the point is concyclic with other three given points.

Based on Ptolemy’s Theorem.

 type(vector_R8P) :: pt(0:3)

 pt(0) = -1 * ey_R8P
 pt(1) =  1 * ex_R8P
 pt(2) =  1 * ey_R8P
 pt(3) = -1 * ex_R8P
 print "(L1)", pt(0)%is_concyclic(pt1=pt(1), pt2=pt(2), pt3=pt(3))
 type(vector_R8P) :: pt(0:3)

 pt(0) = -1 * ey_R8P
 pt(1) =  1 * ex_R8P
 pt(2) =  1 * ey_R8P
 pt(3) = -1 * ex_R8P
 print "(L1)", is_concyclic_R8P(pt(0), pt1=pt(1), pt2=pt(2), pt3=pt(3))

Arguments

TypeIntentOptionalAttributesName
class(vector_R8P), intent(in) :: self

Vector.

type(vector_R8P), intent(in) :: pt1

First arc point.

type(vector_R8P), intent(in) :: pt2

Second arc point.

type(vector_R8P), intent(in) :: pt3

Third arc point.

real(kind=R8P), intent(in), optional :: tolerance

Tolerance for concyclicity check.

Return Value logical

Inquire result.


Calls

proc~~is_concyclic_r8p~~CallsGraph proc~is_concyclic_r8p is_concyclic_R8P proc~sq_norm_r8p sq_norm_R8P proc~is_concyclic_r8p->proc~sq_norm_r8p

Called by

proc~~is_concyclic_r8p~~CalledByGraph proc~is_concyclic_r8p is_concyclic_R8P program~volatile_doctest~251 volatile_doctest program~volatile_doctest~251->proc~is_concyclic_r8p

Contents

None